यदि वृत्त $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ तथा $( x -4)^{2}+( y -7)^{2}=36$ दो भिन्न बिन्दुओं पर काटते हैं, तो

  • [JEE MAIN 2019]
  • A

    $0 < r < 1$

  • B

    $1 < r < 11$

  • C

    $r>11$

  • D

    $r=11$

Similar Questions

एक वृत्त मूलबिन्दु से जाता है एवं इसका केन्द्र $y = x$ पर है। यदि यह ${x^2} + {y^2} - 4x - 6y + 10 = 0$ को लम्बवत् काटता है, तो वृत्त का समीकरण होगा

दो वृत्तों $x^{2}+y^{2}=16$ तथा $x^{2}+y^{2}-2 y=0$, के लिए है

  • [JEE MAIN 2014]

उस वृत्त का समीकरण जिसके अभिलम्ब  ${x^2} + 2xy + 3x + 6y = 0$ हैं एवं इसका आकार इतना है कि यह $x(x - 4) + y(y - 3) = 0$ को ठीक अन्दर रखता है, होगा

वृत्त ${(x - 3)^2} + {(y - 4)^2} = {r^2}$ पूर्णत: वृत्त ${x^2} + {y^2} = {R^2}$ के भीतर है। यदि

दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि

  • [AIEEE 2011]